
jNc           @   sW  id  d 6d d 6d d 6d d 6d d	 6d
 d 6d d 6d d 6d d 6d d 6d d 6d d 6d d 6d d 6d d 6d d 6d  d! 6d" d# 6d$ d% 6d& d' 6d( d) 6d* d+ 6d, d- 6d. d/ 6d0 d1 6d2 d3 6d4 d5 6d6 d7 6d8 d9 6d: d; 6d< d= 6d> d? 6d@ dA 6dB dC 6dD dE 6dF dG 6dH dI 6dJ dK 6dL dM 6dN dO 6dP dQ 6dR dS 6dT dU 6dV dW 6dX dY 6dZ d[ 6d\ d] 6d^ d_ 6d` da 6db dc 6dd de 6df dg 6dh di 6dj dk 6dl dm 6dn do 6dp dq 6dr ds 6dt du 6dv dw 6dx dy 6dz d{ 6d| d} 6d~ d 6d d 6d d 6d d 6d d 6d d 6d d 6d d 6d d 6d d 6d d 6d d 6d d 6d d 6d d 6d d 6d d 6d d 6d d 6d d 6d d 6d d 6d d 6d d 6d d 6d d 6d d 6d d 6d d 6d d 6d d 6d d 6d d 6d d 6d d 6d d 6d d 6d d 6d d 6d d 6d d 6d d 6d d 6d d 6d d 6d d 6d d 6d d 6d d 6d d 6d d 6d d 6d d 6d d 6d d 6d d 6d d 6d d 6d d 6d d 6d d 6d d 6d d 6d d 6d d 6d d6dd6dd6dd6dd	6d
d6dd6dd6dd6dd6dd6dd6dd6dd6dd6dd6d d!6d"d#6d$d%6d&d'6d(d)6d*d+6d,d-6d.d/6d0d16d2d36d4d56d6d76d8d96d:d;6d<d=6d>d?6d@dA6dBdC6dDdE6dFdG6dHdI6dJdK6dLdM6dNdO6dPdQ6dRdS6dTdU6dVdW6dXdY6dZd[6d\d]6d^d_6d`da6dbdc6ddde6dfdg6dhdi6djdk6dldm6dndo6dpdq6drds6dtdu6dvdw6dxdy6dzd{6d|d}6d~d6dd6dd6dd6dd6dd6dd6dd6dd6dd6dd6dd6dd6dd6dd6dd6dd6dd6dd6dd6dd6dd6dd6dd6dd6dd6dd6dd6dd6dd6dd6dd6dd6dd6dd6dd6dd6dd6dd6dd6dd6dd6dd6dd6dd6dd6dd6dd6dd6dd6dd6dd6dd6dd6dd6dd6dd6dd6dd6dd6dd6dd6dd6dd6dd6d d6dd6dd6dd6dd	6d
d6dd6dd6dd6dd6dd6dd6dd6dd6dd6dd6d d!6d"d#6d$d%6d&d'6d(d)6d*d+6d,d-6d.d/6d0d16d2d36d4d56d6d76d8d96d:d;6d<d=6d>d?6d@dA6dBdC6dDdE6dFdG6dHdI6dJdK6dLdM6dNdO6dPdQ6dRdS6dTdU6dVdW6dXdY6dZd[6d\d]6d^d_6d`da6dbdc6ddde6dfdg6dhdi6djdk6dldm6dndo6dpdq6drds6dtdu6dvdw6dxdy6dzd{6d|d}6d~d6dd6dd6dd6dd6dd6dd6dd6dd6dd6dd6dd6dd6dd6dd6dd6dd6dd6dd6dd6dd6dd6dd6dd6dd6dd6dd6dd6dd6dd6dd6dd6dd6dd6dd6dd6dd6dd6dd6dd6dd6dd6dd6dd6dd6dd6dd6dd6dd6dd6dd6dd6dd6dd6dd6dd6dd6dd6dd6dd6dd6dd6dd6dd6dd6d d6dd6dd6dd6dd	6d
d6dd6dd6dd6dd6dd6dd6dd6dd6dd6dd6d d!6d"d#6d$d%6d&d'6d(d)6d*d+6d,d-6d.d/6d0d16d2d36d4d56d6d76d8d96d:d;6d<d=6d>d?6d@dA6dBdC6dDdE6dFdG6dHdI6dJdK6dLdM6dNdO6dPdQ6dRdS6dTdU6dVdW6dXdY6dZd[6d\d]6d^d_6d`da6dbdc6ddde6dfdg6dhdi6djdk6dldm6dndo6dpdq6drds6dtdu6dvdw6dxdy6dzd{6d|d}6d~d6dd6dd6dd6dd6dd6dd6dd6dd6dd6dd6dd6dd6dd6dd6dd6dd6dd6dd6dd6dd6dd6dd6dd6dd6dd6dd6dd6dd6dd6dd6dd6dd6dd6dd6dd6dd6dd6dd6dd6dd6dd6dd6dd6dd6dd6dd6dd6dd6dd6dd6dd6dd6dd6dd6dd6dd6dd6dd6dd6dd6dd6dd6dd6dd6d d6dd6dd6dd6dd	6d
d6dd6dd6dd6dd6dd6dd6dd6dd6dd6dd6d d!6d"d#6d$d%6d&d'6d(d)6d*d+6d,d-6d.d/6d0d16d2d36d4d56d6d76d8d96d:d;6d<d=6d>d?6d@dA6dBdC6dDdE6dFdG6dHdI6dJdK6dLdM6dNdO6dPdQ6dRdS6dTdU6dVdW6dXdY6dZd[6d\d]6d^d_6d`da6dbdc6ddde6dfdg6dhdi6djdk6dldm6dndo6dpdq6drds6dtdu6dvdw6dxdy6dzd{6d|d}6d~d6dd6dd6dd6dd6dd6dd6dd6dd6dd6dd6dd6dd6dd6dd6dd6dd6dd6dd6dd6dd6dd6dd6dd6dd6dd6dd6dd6dd6dd6dd6dd6dd6dd6dd6dd6dd6dd6dd6dd6dd6dd6dd6dd6dd6dd6dd6dd6dd6dd6dd6dd6dd6dd6dd6dd6dd6dd6dd6dd6dd6dd6dd6dd6dd6d d6dd6dd6dd6dd	6d
d6dd6dd6dd6dd6dd6dd6dd6dd6dd6dd6d d!6d"d#6d$d%6d&d'6d(d)6d*d+6d,d-6d.d/6d0d16d2d36d4d56d6d76d8d96d:d;6d<d=6d>d?6d@dA6dBdC6dDdE6dFdG6dHdI6dJdK6dLdM6dNdO6dPdQ6dRdS6dTdU6dVdW6dXdY6dZd[6d\d]6d^d_6d`da6dbdc6ddde6dfdg6dhdi6djdk6d dl6d dm6dndo6dpdq6drds6dtdu6dvdw6dxdy6dzd{6d|d}6d~d6dd6dd6dd6dd6dd6dd6dd6dd6dd6dd6dd6dd6dd6d, d6d. d6d0 d6d2 d6d4 d6d6 d6d8 d6d: d6d< d6d> d6d@ d6dB d6dD d6dF d6dH d6dJ d6dL d6dN d6dP d6dR d6dT d6dV d6dX d6dZ d6d*d6dd6d\ d6dd6d^ d6dd6d` d6dd6dd6dd6dd6dd6dd6dd6dd6dd6dd6dd6dd6dd6dd6dd6dd6dd6dd6dd6dd6dd6dd6dd6dd6dd6dd6dd6dd6dd6dd6Z  dS(  u   ~i   u   \pounds i   u   \yen i   u   \neg i   u
   \circledR i   u   \pm i   u   \times i   u   \eth i   u   \div i   u   \imath i1  u   \jmath i7  u   \Gamma i  u   \Delta i  u   \Theta i  u   \Lambda i  u   \Xi i  u   \Pi i  u   \Sigma i  u	   \Upsilon i  u   \Phi i  u   \Psi i  u   \Omega i  u   \alpha i  u   \beta i  u   \gamma i  u   \delta i  u   \varepsilon i  u   \zeta i  u   \eta i  u   \theta i  u   \iota i  u   \kappa i  u   \lambda i  u   \mu i  u   \nu i  u   \xi i  u   \pi i  u   \rho i  u
   \varsigma i  u   \sigma i  u   \tau i  u	   \upsilon i  u   \varphi i  u   \chi i  u   \psi i  u   \omega i  u
   \vartheta i  u   \phi i  u   \varpi i  u	   \digamma i  u   \backepsilon i  u   \quad i   u   \| i   u   \dagger i    u	   \ddagger i!   u   \ldots i&   u   \prime i2   u   \backprime i5   u   \: i_   u
   \mathbb{C}i!  u   \mathcal{H}i!  u   \mathfrak{H}i!  u
   \mathbb{H}i!  u   \hslash i!  u   \mathcal{I}i!  u   \Im i!  u   \mathcal{L}i!  u   \ell i!  u
   \mathbb{N}i!  u   \wp i!  u
   \mathbb{P}i!  u
   \mathbb{Q}i!  u   \mathcal{R}i!  u   \Re i!  u
   \mathbb{R}i!  u
   \mathbb{Z}i$!  u   \mho i'!  u   \mathfrak{Z}i(!  u   \mathcal{B}i,!  u   \mathfrak{C}i-!  u   \mathcal{E}i0!  u   \mathcal{F}i1!  u   \Finv i2!  u   \mathcal{M}i3!  u   \aleph i5!  u   \beth i6!  u   \gimel i7!  u   \daleth i8!  u   \leftarrow i!  u	   \uparrow i!  u   \rightarrow i!  u   \downarrow i!  u   \leftrightarrow i!  u   \updownarrow i!  u	   \nwarrow i!  u	   \nearrow i!  u	   \searrow i!  u	   \swarrow i!  u   \nleftarrow i!  u   \nrightarrow i!  u   \twoheadleftarrow i!  u   \twoheadrightarrow i!  u   \leftarrowtail i!  u   \rightarrowtail i!  u   \mapsto i!  u   \hookleftarrow i!  u   \hookrightarrow i!  u   \looparrowleft i!  u   \looparrowright i!  u   \leftrightsquigarrow i!  u   \nleftrightarrow i!  u   \Lsh i!  u   \Rsh i!  u   \curvearrowleft i!  u   \curvearrowright i!  u   \circlearrowleft i!  u   \circlearrowright i!  u   \leftharpoonup i!  u   \leftharpoondown i!  u   \upharpoonright i!  u   \upharpoonleft i!  u   \rightharpoonup i!  u   \rightharpoondown i!  u   \downharpoonright i!  u   \downharpoonleft i!  u   \rightleftarrows i!  u   \leftrightarrows i!  u   \leftleftarrows i!  u   \upuparrows i!  u   \rightrightarrows i!  u   \downdownarrows i!  u   \leftrightharpoons i!  u   \rightleftharpoons i!  u   \nLeftarrow i!  u   \nLeftrightarrow i!  u   \nRightarrow i!  u   \Leftarrow i!  u	   \Uparrow i!  u   \Rightarrow i!  u   \Downarrow i!  u   \Leftrightarrow i!  u   \Updownarrow i!  u   \Lleftarrow i!  u   \Rrightarrow i!  u   \rightsquigarrow i!  u   \dashleftarrow i!  u   \dashrightarrow i!  u   \forall i "  u   \complement i"  u	   \partial i"  u   \exists i"  u	   \nexists i"  u   \varnothing i"  u   \nabla i"  u   \in i"  u   \notin i	"  u   \ni i"  u   \prod i"  u   \coprod i"  u   \sum i"  u   -i"  u   \mp i"  u	   \dotplus i"  u   \slash i"  u   \smallsetminus i"  u   \ast i"  u   \circ i"  u   \bullet i"  u   \sqrt i"  u	   \sqrt[3] i"  u	   \sqrt[4] i"  u   \propto i"  u   \infty i"  u   \angle i "  u   \measuredangle i!"  u   \sphericalangle i""  u   \mid i#"  u   \nmid i$"  u
   \parallel i%"  u   \nparallel i&"  u   \wedge i'"  u   \vee i("  u   \cap i)"  u   \cup i*"  u   \int i+"  u   \iint i,"  u   \iiint i-"  u   \oint i."  u   \therefore i4"  u	   \because i5"  u   :i6"  u   \sim i<"  u	   \backsim i="  u   \wr i@"  u   \nsim iA"  u   \eqsim iB"  u   \simeq iC"  u   \cong iE"  u   \ncong iG"  u   \approx iH"  u
   \approxeq iJ"  u   \asymp iM"  u   \Bumpeq iN"  u   \bumpeq iO"  u   \doteq iP"  u   \Doteq iQ"  u   \fallingdotseq iR"  u   \risingdotseq iS"  u   \eqcirc iV"  u   \circeq iW"  u   \triangleq i\"  u   \neq i`"  u   \equiv ia"  u   \leq id"  u   \geq ie"  u   \leqq if"  u   \geqq ig"  u   \lneqq ih"  u   \gneqq ii"  u   \ll ij"  u   \gg ik"  u	   \between il"  u   \nless in"  u   \ngtr io"  u   \nleq ip"  u   \ngeq iq"  u	   \lesssim ir"  u   \gtrsim is"  u	   \lessgtr iv"  u	   \gtrless iw"  u   \prec iz"  u   \succ i{"  u   \preccurlyeq i|"  u   \succcurlyeq i}"  u	   \precsim i~"  u	   \succsim i"  u   \nprec i"  u   \nsucc i"  u   \subset i"  u   \supset i"  u
   \subseteq i"  u
   \supseteq i"  u   \nsubseteq i"  u   \nsupseteq i"  u   \subsetneq i"  u   \supsetneq i"  u   \uplus i"  u
   \sqsubset i"  u
   \sqsupset i"  u   \sqsubseteq i"  u   \sqsupseteq i"  u   \sqcap i"  u   \sqcup i"  u   \oplus i"  u   \ominus i"  u   \otimes i"  u   \oslash i"  u   \odot i"  u   \circledcirc i"  u   \circledast i"  u   \circleddash i"  u	   \boxplus i"  u
   \boxminus i"  u
   \boxtimes i"  u   \boxdot i"  u   \vdash i"  u   \dashv i"  u   \top i"  u   \bot i"  u   \models i"  u   \vDash i"  u   \Vdash i"  u   \Vvdash i"  u   \nvdash i"  u   \nvDash i"  u   \nVdash i"  u   \nVDash i"  u   \vartriangleleft i"  u   \vartriangleright i"  u   \trianglelefteq i"  u   \trianglerighteq i"  u
   \multimap i"  u
   \intercal i"  u   \veebar i"  u
   \barwedge i"  u
   \bigwedge i"  u   \bigvee i"  u   \bigcap i"  u   \bigcup i"  u	   \diamond i"  u   \cdot i"  u   \star i"  u   \divideontimes i"  u   \bowtie i"  u   \ltimes i"  u   \rtimes i"  u   \leftthreetimes i"  u   \rightthreetimes i"  u   \backsimeq i"  u
   \curlyvee i"  u   \curlywedge i"  u   \Subset i"  u   \Supset i"  u   \Cap i"  u   \Cup i"  u   \pitchfork i"  u	   \lessdot i"  u   \gtrdot i"  u   \lll i"  u   \ggg i"  u   \lesseqgtr i"  u   \gtreqless i"  u   \curlyeqprec i"  u   \curlyeqsucc i"  u	   \npreceq i"  u	   \nsucceq i"  u   \lnsim i"  u   \gnsim i"  u
   \precnsim i"  u
   \succnsim i"  u   \ntriangleleft i"  u   \ntriangleright i"  u   \ntrianglelefteq i"  u   \ntrianglerighteq i"  u   \vdots i"  u   \cdots i"  u   \ddots i"  u   \lceil i#  u   \rceil i	#  u   \lfloor i
#  u   \rfloor i#  u
   \ulcorner i#  u
   \urcorner i#  u
   \llcorner i#  u
   \lrcorner i#  u   \frown i"#  u   \smile i##  u   \overbrace i#  u   \underbrace i#  u   \bigtriangleup i%  u   \rhd i%  u   \bigtriangledown i%  u   \lhd i%  u	   \Diamond i%  u	   \lozenge i%  u   \square i%  u   \blacksquare i%  u	   \bigstar i&  u   \spadesuit i`&  u   \heartsuit ia&  u   \diamondsuit ib&  u
   \clubsuit ic&  u   \flat im&  u	   \natural in&  u   \sharp io&  u   \checkmark i'  u	   \maltese i '  u   \perp i'  u   \langle i'  u   \rangle i'  u   \lgroup i'  u   \rgroup i'  u   \longleftarrow i'  u   \longrightarrow i'  u   \longleftrightarrow i'  u   \Longleftarrow i'  u   \Longrightarrow i'  u   \Longleftrightarrow i'  u   \longmapsto i'  u   \blacklozenge i)  u
   \setminus i)  u	   \bigodot i *  u
   \bigoplus i*  u   \bigotimes i*  u
   \biguplus i*  u
   \bigsqcup i*  u   \iiiint i*  u   \Join i*  u   \amalg i?*  u   \doublebarwedge i^*  u
   \leqslant i}*  u
   \geqslant i~*  u   \lessapprox i*  u   \gtrapprox i*  u   \lneq i*  u   \gneq i*  u
   \lnapprox i*  u
   \gnapprox i*  u   \lesseqqgtr i*  u   \gtreqqless i*  u   \eqslantless i*  u   \eqslantgtr i*  u   \preceq i*  u   \succeq i*  u   \precapprox i*  u   \succapprox i*  u   \precnapprox i*  u   \succnapprox i*  u   \subseteqq i*  u   \supseteqq i*  u   \subsetneqq i*  u   \supsetneqq i*  u
   \mathbf{A}i  u
   \mathbf{B}i u
   \mathbf{C}i u
   \mathbf{D}i u
   \mathbf{E}i u
   \mathbf{F}i u
   \mathbf{G}i u
   \mathbf{H}i u
   \mathbf{I}i u
   \mathbf{J}i	 u
   \mathbf{K}i
 u
   \mathbf{L}i u
   \mathbf{M}i u
   \mathbf{N}i u
   \mathbf{O}i u
   \mathbf{P}i u
   \mathbf{Q}i u
   \mathbf{R}i u
   \mathbf{S}i u
   \mathbf{T}i u
   \mathbf{U}i u
   \mathbf{V}i u
   \mathbf{W}i u
   \mathbf{X}i u
   \mathbf{Y}i u
   \mathbf{Z}i u
   \mathbf{a}i u
   \mathbf{b}i u
   \mathbf{c}i u
   \mathbf{d}i u
   \mathbf{e}i u
   \mathbf{f}i u
   \mathbf{g}i  u
   \mathbf{h}i! u
   \mathbf{i}i" u
   \mathbf{j}i# u
   \mathbf{k}i$ u
   \mathbf{l}i% u
   \mathbf{m}i& u
   \mathbf{n}i' u
   \mathbf{o}i( u
   \mathbf{p}i) u
   \mathbf{q}i* u
   \mathbf{r}i+ u
   \mathbf{s}i, u
   \mathbf{t}i- u
   \mathbf{u}i. u
   \mathbf{v}i/ u
   \mathbf{w}i0 u
   \mathbf{x}i1 u
   \mathbf{y}i2 u
   \mathbf{z}i3 u   Ai4 u   Bi5 u   Ci6 u   Di7 u   Ei8 u   Fi9 u   Gi: u   Hi; u   Ii< u   Ji= u   Ki> u   Li? u   Mi@ u   NiA u   OiB u   PiC u   QiD u   RiE u   SiF u   TiG u   UiH u   ViI u   WiJ u   XiK u   YiL u   ZiM u   aiN u   biO u   ciP u   diQ u   eiR u   fiS u   giT u   iiV u   jiW u   kiX u   liY u   miZ u   ni[ u   oi\ u   pi] u   qi^ u   ri_ u   si` u   tia u   uib u   vic u   wid u   xie u   yif u   zig u   \mathcal{A}i u   \mathcal{C}i u   \mathcal{D}i u   \mathcal{G}i u   \mathcal{J}i u   \mathcal{K}i u   \mathcal{N}i u   \mathcal{O}i u   \mathcal{P}i u   \mathcal{Q}i u   \mathcal{S}i u   \mathcal{T}i u   \mathcal{U}i u   \mathcal{V}i u   \mathcal{W}i u   \mathcal{X}i u   \mathcal{Y}i u   \mathcal{Z}i u   \mathfrak{A}i u   \mathfrak{B}i u   \mathfrak{D}i u   \mathfrak{E}i u   \mathfrak{F}i	 u   \mathfrak{G}i
 u   \mathfrak{J}i u   \mathfrak{K}i u   \mathfrak{L}i u   \mathfrak{M}i u   \mathfrak{N}i u   \mathfrak{O}i u   \mathfrak{P}i u   \mathfrak{Q}i u   \mathfrak{S}i u   \mathfrak{T}i u   \mathfrak{U}i u   \mathfrak{V}i u   \mathfrak{W}i u   \mathfrak{X}i u   \mathfrak{Y}i u   \mathfrak{a}i u   \mathfrak{b}i u   \mathfrak{c}i  u   \mathfrak{d}i! u   \mathfrak{e}i" u   \mathfrak{f}i# u   \mathfrak{g}i$ u   \mathfrak{h}i% u   \mathfrak{i}i& u   \mathfrak{j}i' u   \mathfrak{k}i( u   \mathfrak{l}i) u   \mathfrak{m}i* u   \mathfrak{n}i+ u   \mathfrak{o}i, u   \mathfrak{p}i- u   \mathfrak{q}i. u   \mathfrak{r}i/ u   \mathfrak{s}i0 u   \mathfrak{t}i1 u   \mathfrak{u}i2 u   \mathfrak{v}i3 u   \mathfrak{w}i4 u   \mathfrak{x}i5 u   \mathfrak{y}i6 u   \mathfrak{z}i7 u
   \mathbb{A}i8 u
   \mathbb{B}i9 u
   \mathbb{D}i; u
   \mathbb{E}i< u
   \mathbb{F}i= u
   \mathbb{G}i> u
   \mathbb{I}i@ u
   \mathbb{J}iA u
   \mathbb{K}iB u
   \mathbb{L}iC u
   \mathbb{M}iD u
   \mathbb{O}iF u
   \mathbb{S}iJ u
   \mathbb{T}iK u
   \mathbb{U}iL u
   \mathbb{V}iM u
   \mathbb{W}iN u
   \mathbb{X}iO u
   \mathbb{Y}iP u   \Bbbk i\ u
   \mathsf{A}i u
   \mathsf{B}i u
   \mathsf{C}i u
   \mathsf{D}i u
   \mathsf{E}i u
   \mathsf{F}i u
   \mathsf{G}i u
   \mathsf{H}i u
   \mathsf{I}i u
   \mathsf{J}i u
   \mathsf{K}i u
   \mathsf{L}i u
   \mathsf{M}i u
   \mathsf{N}i u
   \mathsf{O}i u
   \mathsf{P}i u
   \mathsf{Q}i u
   \mathsf{R}i u
   \mathsf{S}i u
   \mathsf{T}i u
   \mathsf{U}i u
   \mathsf{V}i u
   \mathsf{W}i u
   \mathsf{X}i u
   \mathsf{Y}i u
   \mathsf{Z}i u
   \mathsf{a}i u
   \mathsf{b}i u
   \mathsf{c}i u
   \mathsf{d}i u
   \mathsf{e}i u
   \mathsf{f}i u
   \mathsf{g}i u
   \mathsf{h}i u
   \mathsf{i}i u
   \mathsf{j}i u
   \mathsf{k}i u
   \mathsf{l}i u
   \mathsf{m}i u
   \mathsf{n}i u
   \mathsf{o}i u
   \mathsf{p}i u
   \mathsf{q}i u
   \mathsf{r}i u
   \mathsf{s}i u
   \mathsf{t}i u
   \mathsf{u}i u
   \mathsf{v}i u
   \mathsf{w}i u
   \mathsf{x}i u
   \mathsf{y}i u
   \mathsf{z}i u
   \mathtt{A}ip u
   \mathtt{B}iq u
   \mathtt{C}ir u
   \mathtt{D}is u
   \mathtt{E}it u
   \mathtt{F}iu u
   \mathtt{G}iv u
   \mathtt{H}iw u
   \mathtt{I}ix u
   \mathtt{J}iy u
   \mathtt{K}iz u
   \mathtt{L}i{ u
   \mathtt{M}i| u
   \mathtt{N}i} u
   \mathtt{O}i~ u
   \mathtt{P}i u
   \mathtt{Q}i u
   \mathtt{R}i u
   \mathtt{S}i u
   \mathtt{T}i u
   \mathtt{U}i u
   \mathtt{V}i u
   \mathtt{W}i u
   \mathtt{X}i u
   \mathtt{Y}i u
   \mathtt{Z}i u
   \mathtt{a}i u
   \mathtt{b}i u
   \mathtt{c}i u
   \mathtt{d}i u
   \mathtt{e}i u
   \mathtt{f}i u
   \mathtt{g}i u
   \mathtt{h}i u
   \mathtt{i}i u
   \mathtt{j}i u
   \mathtt{k}i u
   \mathtt{l}i u
   \mathtt{m}i u
   \mathtt{n}i u
   \mathtt{o}i u
   \mathtt{p}i u
   \mathtt{q}i u
   \mathtt{r}i u
   \mathtt{s}i u
   \mathtt{t}i u
   \mathtt{u}i u
   \mathtt{v}i u
   \mathtt{w}i u
   \mathtt{x}i u
   \mathtt{y}i u
   \mathtt{z}i i i u   \mathbf{\Gamma}i u   \mathbf{\Delta}i u   \mathbf{\Theta}i u   \mathbf{\Lambda}i u   \mathbf{\Xi}i u   \mathbf{\Pi}i u   \mathbf{\Sigma}i u   \mathbf{\Upsilon}i u   \mathbf{\Phi}i u   \mathbf{\Psi}i u   \mathbf{\Omega}i u   \mathit{\Gamma}i u   \mathit{\Delta}i u   \mathit{\Theta}i u   \mathit{\Lambda}i u   \mathit{\Xi}i u   \mathit{\Pi}i u   \mathit{\Sigma}i u   \mathit{\Upsilon}i u   \mathit{\Phi}i u   \mathit{\Psi}i u   \mathit{\Omega}i i i i i i  i i i i i i i i i	 i i i i i i i i i i i u	   \epsilon i i u
   \varkappa i i u   \varrho i i u
   \mathbf{0}i u
   \mathbf{1}i u
   \mathbf{2}i u
   \mathbf{3}i u
   \mathbf{4}i u
   \mathbf{5}i u
   \mathbf{6}i u
   \mathbf{7}i u
   \mathbf{8}i u
   \mathbf{9}i u
   \mathsf{0}i u
   \mathsf{1}i u
   \mathsf{2}i u
   \mathsf{3}i u
   \mathsf{4}i u
   \mathsf{5}i u
   \mathsf{6}i u
   \mathsf{7}i u
   \mathsf{8}i u
   \mathsf{9}i u
   \mathtt{0}i u
   \mathtt{1}i u
   \mathtt{2}i u
   \mathtt{3}i u
   \mathtt{4}i u
   \mathtt{5}i u
   \mathtt{6}i u
   \mathtt{7}i u
   \mathtt{8}i u
   \mathtt{9}i N(   t   uni2tex_table(    (    (    sC   /usr/lib/python2.7/dist-packages/docutils/utils/math/unichar2tex.pyt   <module>   s  